Forbidding tight cycles in hypergraphs

Hao Huang

Emory University

Aug 13, 2018

Joint work with Jie Ma (USTC).

A CLASSIC RESULT

An *n*-vertex cycle-free graph has at most n-1 edges.

A CLASSIC RESULT

An *n*-vertex cycle-free graph has at most n-1 edges.

Proof.

- Easiest proof: see any graph theory textbook.
- An overcomplicated "proof":

$$ex(n, C_{2k}) = O(n^{1+1/k}).$$

QUESTION

Can we generalize these results to k-uniform hypergraphs?

How to generalize cycles to hypergraphs?

• Berge cycle BC_{ℓ}^{k}

 $v_1, e_1, v_2, e_2, \cdots, v_m, e_m, v_1 \qquad \forall i, v_i, v_{i+1} \in e_i.$

• Loose cycle LC_{ℓ}^{k}

$$(v_1, \dots, v_k), (v_k, \dots, v_{2k-1}), \dots, (v_{1+(k-1)(\ell-1)}, \dots, v_1)$$

• Tight cycle TC_{ℓ}^{k}

$$(v_1, \dots, v_k), (v_2, \dots, v_{k+1}), \dots, (v_{\ell}, \dots, v_{k-1})$$

Berge cycles and Loose cycles

Berge cycle:

THEOREM (GYÖRI, LEMONS 2012)

For $k \geq 3, \ell \geq 4$,

$$ex(n, BC_{\ell}^{k}) = O(n^{1 + \frac{1}{\lceil (\ell-1)/2 \rceil}}).$$

Loose cycle:

THEOREM (KOSTOCHKA, MUBAYI, VERSTRAËTE 2013) For $k, \ell \ge 3$, $ex(n, LC_{\ell}^{k}) \sim \left\lfloor \frac{\ell-1}{2} \right\rfloor {n \choose k-1}$. Two most important results:

THEOREM (RÖDL, RUCIŃSKI, SZEMERÉDI, 2011)

For all $\gamma > 0$, every sufficiently large k-uniform hypergraph in which every (k-1)-set of vertices lies in at least $(1/2 + \gamma)n$ edges contains a tight Hamilton cycle.

THEOREM (ALLEN, BÖTTCHER, COOLEY, MYCROFT 2017)

For every $\delta > 0$, there exists n_0 such that for any $0 < \alpha \le 1$, every k-uniform hypergraph on $n \ge n_0$ vertices with at least $(\alpha + \delta)\binom{n}{k}$ edges contains a tight cycle of length at least αn .

Most of these works focus on the case when the extremal hypergraph is dense.

A k-uniform hypergraph is tight-cycle-free if it does not contain TC_{ℓ}^{k} for any $\ell \ge k + 1$.

Denote by $f_k(n)$ the maximum number of edges in a tight-cycle-free k-uniform *n*-vertex hypergraph.

OBSERVATION

$$\binom{n-1}{k-1} \leq f_k(n) = O(n^k).$$

A k-uniform hypergraph is tight-cycle-free if it does not contain TC_{ℓ}^{k} for any $\ell \ge k + 1$.

Denote by $f_k(n)$ the maximum number of edges in a tight-cycle-free k-uniform *n*-vertex hypergraph.

OBSERVATION

$$\binom{n-1}{k-1} \leq f_k(n) = O(n^k).$$

Proof. Consider a full-*k*-star centered at 1.

$$H = \{S : 1 \in S \subset [n] : |S| = k\}.$$

Forbidding tight cycles of fixed length

QUESTION (CONLON)

Does there exist a constant c > 0 such that $ex(n, TC_{\ell}^3) = O(n^{2+c/\ell})$ for all ℓ which are divisible by 3?

If true, this would imply $f_3(n) = O(n^{2+o(1)})$.

PROPOSITION

$$\Omega(n^{2.5}) = ex(n, TC_6^3) = O(n^{2.75}).$$

- Lower bound: let |A| = |B| = |C| = n, take C_4 -free bipartite graph G on $B \cup C$. Let $E(H) = \{i \cup e : i \in A, e \in E(H)\}$.
- Upper bound: $TC_6^3 \subset K_{2,2,2}^3$.

THEOREM (VERSTRAËTE)

 $ex(n, TC_{12}^3) = O(n^{2.5}).$

QUESTION (VERSTRAËTE, SÖS)

Is it true that for all $k \ge 2$,

$$f_k(n) = \binom{n-1}{k-1}?$$

THEOREM (H., MA 2018+)

For every $k \ge 3$, there exists a constant c = c(k) > 0, such that for sufficiently large n,

$$f_k(n) \ge (1+c)\binom{n-1}{k-1}.$$

•
$$k = 3$$
: $c > \frac{1}{5}$.
• $k \ge 4$: $c > \frac{1}{\binom{O(k^3)}{k}}$

- Take a star $\mathcal{F} = \{S : 1 \in S \subset [n], |S| = 3\}.$
- Remove (n-1)/2 triples of the form (1, 2i, 2i+1).
- Add n-1 triples (2i, 2i+1, 2i+2), and (2i, 2i+1, 2i+3).

- Take a star $\mathcal{F} = \{S : 1 \in S \subset [n], |S| = 3\}.$
- Remove (n-1)/2 triples of the form (1, 2i, 2i+1).
- Add n-1 triples (2i, 2i+1, 2i+2), and (2i, 2i+1, 2i+3).

- Take a star $\mathcal{F} = \{S : 1 \in S \subset [n], |S| = 3\}.$
- Remove (n-1)/2 triples of the form (1, 2i, 2i+1).
- Add n-1 triples (2i, 2i+1, 2i+2), and (2i, 2i+1, 2i+3).

- Take a star $\mathcal{F} = \{S : 1 \in S \subset [n], |S| = 3\}.$
- Remove (n-1)/2 triples of the form (1, 2i, 2i+1).
- Add n-1 triples (2i, 2i+1, 2i+2), and (2i, 2i+1, 2i+3).

- Take a star $\mathcal{F} = \{S : 1 \in S \subset [n], |S| = 3\}.$
- Remove (n-1)/2 triples of the form (1, 2i, 2i+1).
- Add n-1 triples (2i, 2i+1, 2i+2), and (2i, 2i+1, 2i+3).

- Take a star $\mathcal{F} = \{S : 1 \in S \subset [n], |S| = 3\}.$
- Remove (n-1)/2 triples of the form (1, 2i, 2i+1).
- Add n-1 triples (2i, 2i+1, 2i+2), and (2i, 2i+1, 2i+3).

- Take a star $\mathcal{F} = \{S : 1 \in S \subset [n], |S| = 3\}.$
- Remove (n-1)/2 triples of the form (1, 2i, 2i+1).
- Add n-1 triples (2i, 2i+1, 2i+2), and (2i, 2i+1, 2i+3).

- Take a star $\mathcal{F} = \{S : 1 \in S \subset [n], |S| = 3\}.$
- Remove (n-1)/2 triples of the form (1, 2i, 2i+1).
- Add n-1 triples (2i, 2i+1, 2i+2), and (2i, 2i+1, 2i+3).

Kalai's Conjecture

However, this gives only $f_3(n) \ge {\binom{n-1}{2}} + \frac{n-1}{2} = (1+o(1)){\binom{n-1}{2}}$. How can we show $f_3(n) \ge (1+c){\binom{n-1}{2}}$ for positive c?

KALAI'S CONJECTURE

For every integer k and ℓ , suppose H is a k-uniform *n*-vertex hypergraph not containing TP_{ℓ}^{k} , then

$$e(H) \leq \frac{\ell-1}{k} \binom{n}{k-1}.$$

- Note that $TP_{\ell}^k \notin K_{k+\ell-2}^k$.
- Take an (almost) Steiner system S of $(k + \ell 2)$ -sets, such that every (k 1)-tuple appears at most once.
- Replace each set in S by a copy of $K_{k+\ell-2}^k$. This gives

$$e(H) = \frac{\binom{n}{k-1}}{\binom{k+\ell-2}{k-1}} \cdot \binom{k+\ell-2}{k} = \frac{\ell-1}{k}\binom{n}{k-1}.$$

A naive approach:

Take the previous construction H (on say n vertices). For large N, take an (almost) Steiner system S of n-subsets of [N], with each pair appearing at most once. Replace each set in S by a copy of H.

The resulted hypergraph G is tight-cycle-free. But

$$e(G) \sim \frac{\binom{N}{2}}{\binom{n}{2}}e(H).$$

Unless e(H) is already > $(1 + c)\binom{n}{2}$, this approach would not work.

Improvement of the constant factor (II)

Definition. The *t*-shadow of a hypergraph *H*, denoted by $\partial_t(H)$, is defined as the following:

 $\partial_t(H) = \{S: |S| = t, S \subset e \text{ for some } e \in E(H)\}.$

Lemma

Let *H* be a full-*k*-star with the vertex set $\{0\} \cup [n]$ and the center 0. Let G_1, \dots, G_t be subhypergraphs of *H*, and F_1, \dots, F_t be *k*-uniform hypergraphs on [n]. Suppose

(i) The hypergraphs $H_i := (H \setminus G_i) \cup F_i$ are tight-cycle-free. (ii) $\partial_{k-1}(F_i) \cap \partial_{k-1}(F_j) = \emptyset$ for all $1 \le i < j \le t$.

Then

$$H' := \left(H \setminus \bigcup_{i=1}^{t} G_i\right) \cup \left(\bigcup_{i=1}^{t} F_i\right)$$

is also tight-cycle-free.

Visualizing the Lemma

Improvement of the constant factor (III)

Recall that the previous example (when n = 7) corresponds to here n = 6, and

$$F \sim \{(1,2,3), (1,2,4), (3,4,5), (3,4,6), (5,6,1), (6,1,2)\}$$
$$G \sim \{(0,1,2), (0,3,4), (0,5,6)\}$$

The 2-shadow of F is

$$\partial_2(F) \sim K_6^2$$

One can pack $(1 - o(1))\frac{\binom{n}{2}}{\binom{6}{2}}$ copies of F in K_n , which gives a tight-cycle-free 3-uniform hypergraph H' on n + 1 vertices and

$$\binom{n-1}{2} + (1-o(1))\frac{\binom{n}{2}}{\binom{6}{2}} \cdot 3 = (1+\frac{1}{5}+o(1))\binom{n-1}{2}$$

edges.

Lemma

Let H be the full k-star, if we

- add new edges $e_1, \dots, e_t \subseteq V(H) \setminus \{0\}$ such that $\partial_{k-1}(e_i) \cap \partial_{k-1}(e_j) = \emptyset$ for all $i \neq j$, and
- delete edges $\{0\} \cup f_i$ for all $1 \le i \le t$, where f_i is any (k-1)-subset of e_i ,

Lemma

Let H be the full k-star, if we

- add new edges $e_1, \dots, e_t \subseteq V(H) \setminus \{0\}$ such that $\partial_{k-1}(e_i) \cap \partial_{k-1}(e_j) = \emptyset$ for all $i \neq j$, and
- delete edges $\{0\} \cup f_i$ for all $1 \le i \le t$, where f_i is any (k-1)-subset of e_i ,

Lemma

Let H be the full k-star, if we

- add new edges $e_1, \dots, e_t \subseteq V(H) \setminus \{0\}$ such that $\partial_{k-1}(e_i) \cap \partial_{k-1}(e_j) = \emptyset$ for all $i \neq j$, and
- delete edges $\{0\} \cup f_i$ for all $1 \le i \le t$, where f_i is any (k-1)-subset of e_i ,

Lemma

Let H be the full k-star, if we

- add new edges $e_1, \dots, e_t \subseteq V(H) \setminus \{0\}$ such that $\partial_{k-1}(e_i) \cap \partial_{k-1}(e_j) = \emptyset$ for all $i \neq j$, and
- delete edges $\{0\} \cup f_i$ for all $1 \le i \le t$, where f_i is any (k-1)-subset of e_i ,

Lemma

Let H be the full k-star, if we

- add new edges $e_1, \dots, e_t \subseteq V(H) \setminus \{0\}$ such that $\partial_{k-1}(e_i) \cap \partial_{k-1}(e_j) = \emptyset$ for all $i \neq j$, and
- delete edges $\{0\} \cup f_i$ for all $1 \le i \le t$, where f_i is any (k-1)-subset of e_i ,

GOAL

Find $F \subset {\binom{[n]}{k}}$ and $G \subset H$, such that

•
$$F = \{e_1, \dots, e_T\} \cup e_0$$
, with $e_0 = [k]$.

•
$$G = \{\{0\} \cup f_i\}_{i=1,\dots,T}$$
 such that $f_i \subset e_i$ and $|f_i| = k - 1$.

•
$$\partial_{k-1}(e_i) \cap \partial_{k-1}(e_j) = \emptyset$$
 for $i > j \ge 1$.

•
$$(H \smallsetminus G) \cup F$$
 is still tight-cycle-free.

We know that $(H \setminus G) \cup (F \setminus e_0)$ is tight-cycle-free. So a potential tight cycle must contain the edge e_0 .

Take
$$f_1, \dots, f_k$$
 to be $f_i = \lfloor k \rfloor \setminus \{i\}$, and $e_i = f_i \cup \{k + i\}$.

An example: (k = 4)

	$e_0 = \{1, 2, 3, 4\}$
$f_1 = \{2, 3, 4\},$	$e_1 = \{2, 3, 4, 5\}$
$f_2 = \{1, 3, 4\},\$	$e_2 = \{1, 3, 4, 6\}$
$f_3 = \{1, 2, 4\},$	$e_3 = \{1, 2, 4, 7\}$
$f_4 = \{1, 2, 3\},$	$e_4 = \{1, 2, 3, 8\}$

Observation. A tight cycle must contain $\pi(1), \pi(2), \pi(3), \pi(4)$ as consecutive vertices (π is a permutation). If it does not contain any of e_1 to e_4 . Then it can only be a TC_5^4 with 0 as the other vertex. This is not possible by the choice of f_i .

Suppose the vertex after $\pi(4)$ is t, then $t \neq 0$, and

$$\{\pi(2),\pi(3),\pi(4),t\}\in F,$$

which means $t = \pi(1) + 4$. The five vertices we have so far cannot form a tight cycle!

Now we have

$$s, \pi(1), \pi(2), \pi(3), \pi(4), \pi(1) + 4,$$

Similarly, $s \neq 0$, and hence $s = \pi(4) + 4$. The only possible tight cycle is

$$\pi(4) + 4, \pi(1), \pi(2), \pi(3), \pi(4), \pi(1) + 4, 0.$$

To destroy them, we remove all the triples

$$f_{k+\alpha} = \{\pi(4), \pi(1) + 4, \pi(4) + 4\},\$$

and add back some $e_{k+\alpha} \supset f_{k+\alpha}$. One can choose *e*'s carefully to make sure their 3-shadows are disjoint.

The final families: $e_0 = \{1, 2, 3, 4\}$	
$f_1 = \{2, 3, 4\},$	$e_1 = \{2, 3, 4, 5\}$
$f_2 = \{1, 3, 4\},$	$e_2 = \{1, 3, 4, 6\}$
$f_3 = \{1, 2, 4\},$	$e_3 = \{1, 2, 4, 7\}$
$f_4 = \{1, 2, 3\},$	$e_4 = \{1, 2, 3, 8\}$
$f_5 = \{1, 6, 5\},$	$e_5 = \{1, 6, 5, 9\}$
$f_6 = \{1, 7, 5\},$	$e_6 = \{1, 7, 5, 10\}$
$f_7 = \{1, 8, 5\},$	$e_7 = \{1, 8, 5, 11\}$
$f_8 = \{2, 5, 6\},$	$e_8 = \{2, 5, 6, 12\}$
$f_9 = \{2, 7, 6\},$	$e_9 = \{2, 7, 6, 13\}$
$f_{10} = \{2, 8, 6\},\$	$e_{10} = \{2, 8, 6, 14\}$
$f_{11} = \{3, 5, 7\},$	$e_{11} = \{3, 5, 7, 15\}$
$f_{12} = \{3, 6, 7\},\$	$e_{12} = \{3, 6, 7, 16\}$
$f_{13} = \{3, 8, 7\},\$	$e_{13} = \{3, 8, 7, 17\}$
$f_{14} = \{4, 5, 8\},\$	$e_{14} = \{4, 5, 8, 18\}$
$f_{15} = \{4, 6, 8\},\$	$e_{15} = \{4, 6, 8, 19\}$
$f_{16} = \{4, 7, 8\},\$	$e_{16} = \{4, 7, 8, 20\}$

Hao Huang

QUESTION

What can we say about $ex(n, TC_{\ell}^k)$?

Smallest non-trivial case: TC_6^3 .

QUESTION

- Can one show for ℓ divisible by k, ex(n, TC_ℓ^k) is "monotone decreasing" in ℓ?
- Or, is it true that for fixed ℓ_1 divisible by k, if ℓ_2 is sufficiently large and divisible by k, then $ex(n, TC_{\ell_1}^k) \gg ex(n, TC_{\ell_2}^k)$?

KALAI'S CONJECTURE

For every integer k and ℓ , suppose H is a k-uniform *n*-vertex hypergraph not containing TP_{ℓ}^{k} , then

$$e(H) \leq \frac{\ell-1}{k} \binom{n}{k-1}.$$

• Patkós (2012):

$$e(H) \leq \sum_{j=2}^{\ell} \frac{j-1}{k-j+1} \binom{n}{k-1}.$$

• Füredi, Jiang, Kostochka, Mubayi, Verstraëte (2017): $(\ell - 1)(k - 1)(n)$

$$e(H) \leq \frac{(k-1)(k-1)}{k} \binom{n}{k-1}.$$

 Füredi, Jiang, Kostochka, Mubayi, Verstraëte (2018+): Kalai's conjecture holds for TP₄³.

Thank you!